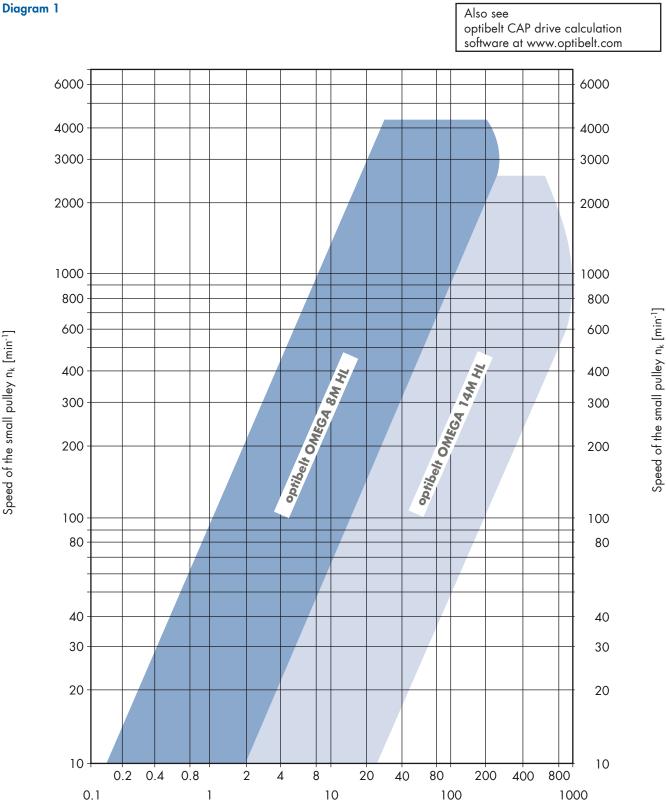
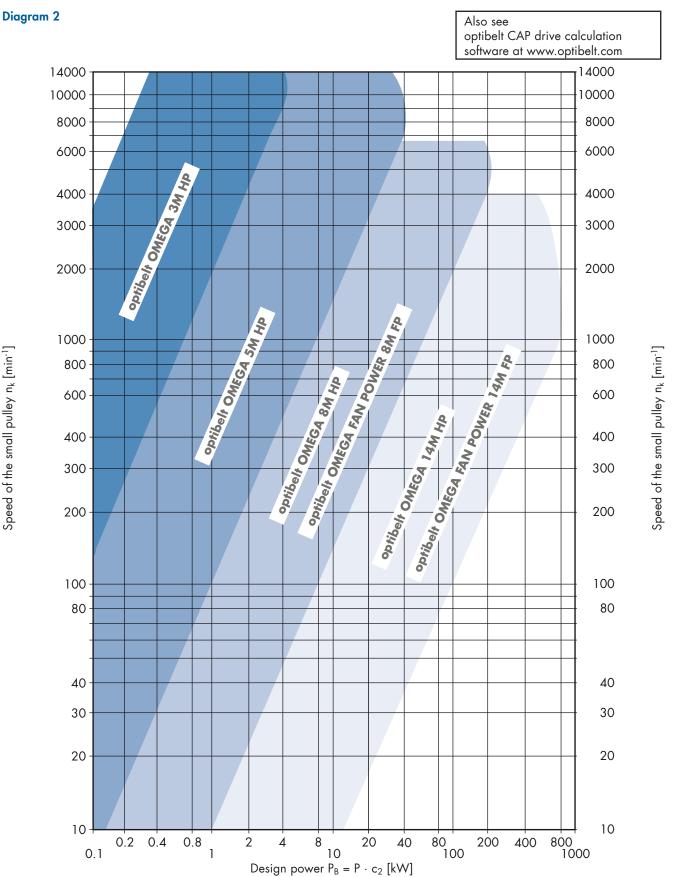

DRIVE DESIGN TIMING BELTS IN optibelt OMEGA PROFILE EXPLANATION OF SYMBOLS



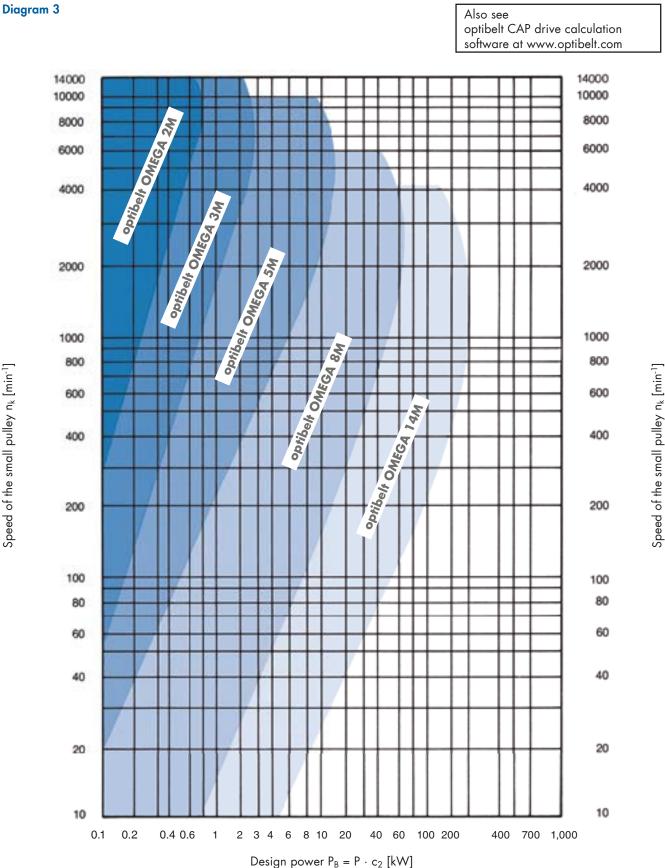
а	=	Drive centre	[mm]	Р	=	Power to be transmitted by timing belt drive	[kW]
a_{nom}	=	Drive centre distance with		P_B	=	Design power	[kW]
		standard belt length	[mm]	P_N	=	Rated power	[kW]
c ₀	=	Basic load factor		Ρü	=	Transmissible power for standard	
c ₁	=	Teeth in mesh factor				belt width $[P_N \cdot c_1 \cdot c_7]$	[kW]
c ₂	=	Overall load factor		Sα	=	Minimum static shaft force when stationary	[N]
c ₃	=	Speed ratio correction factor		$S_{n \; z \upsilon l}$	=	Maximum allowed circumferential force	[N]
c ₆	=	Fatigue correction factor		S _{n3}	=	Circumferential force to be effectively	
C 7	=	Belt length correction factor				transmitted	[N]
da	=	Outside diameter of pulley	[mm]	S _n	=	Effective circumferential force	EN 11
d _w		Pitch diameter of pulley	[mm]			to be transmitted incl. actual centrifugal force	[N]
d _{wg}		Pitch diameter of large pulley	[mm]	t		Tooth pitch	[mm]
d _{wk}		Pitch diameter of small pulley	[mm]	۷		Belt speed	[m/s]
		Pitch diameter of driving pulley	[mm]	х	=	Minimum adjustment of drive centre distance	[
d _{w1}						a _{nom} for tensioning timing belt	[mm]
d _{w2}		Pitch diameter of driven pulley	[mm]	у	=	Minimum adjustment of drive centre distance a_{nom} for installation	[mm]
Εa		Belt deflection for given span length	[mm]	-	_		[]
F	=	Force to create deflection	[N]	z _e		Number of teeth in mesh of small pulley	
f	=	Frequency	[Hz]	zg		Number of teeth on large pulley	
i	=	Speed ratio		z _k		Number of teeth on small pulley	
L	=	Drive span length	[mm]	z _r		Number of teeth on timing belt	
L _{wSt}	=	Standard pitch length of timing belt	[mm]	zı	=	Number of teeth on driving pulley	
L _{wth}		Calculated pitch length of timing belt	[mm]	z ₂	=	Number of teeth on driven pulley	
n ₁			[min ⁻¹]				
n ₂			[min ⁻¹]				
···Z							

DRIVE DESIGN optibelt OMEGA HL TIMING BELTS **GUIDELINES FOR SELECTING THE TIMING BELT PROFILE**



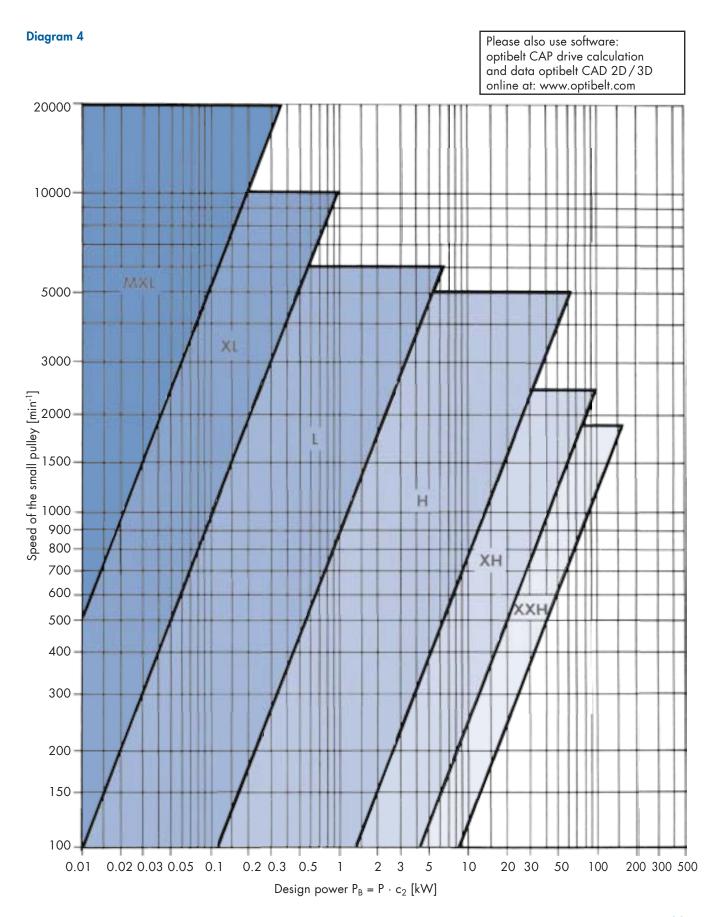
Design power $P_B = P \cdot c_2 [kW]$

DRIVE DESIGN optibelt OMEGA HP, optibelt OMEGA FAN POWER TIMING BELTS **GUIDELINES FOR SELECTING THE TIMING BELT PROFILE**



Speed of the small pulley n_k [min⁻¹]

DRIVE DESIGN optibelt OMEGA TIMING BELTS **GUIDELINES FOR SELECTING THE TIMING BELT PROFILE**



38 © ARNTZ OPTIBELT GROUP, GERMANY

Speed of the small pulley n_k [min⁻¹]

DRIVE DESIGN optibelt **ZR** TIMING BELTS GUIDELINES FOR SELECTING THE TIMING BELT PROFILE

DRIVE DESIGN TIMING BELTS IN optibelt OMEGA PROFILE LOAD FACTORS

Total load factor c₂

The total load factor c_2 is comprised of the basic load factor c_0 plus two further loads c_3 and c_6 .

 $c_2 = c_0 + c_3 + c_6$

 $c_2 \ge M_A/M_N$ recommended for frequent starts and stops

Table 5 Basic load factor c₀

Basic load factor c₀

The basic load factor c_0 takes into account the daily operating time, the type of drive and the prime mover. As it is almost impossible to put all the possible combinations of prime mover / driven unit / environmental conditions in a shortened form which conforms to standards, the service factors shown here are given only as a guideline. The classification of the work machine is dependent on the respective present load type.

	Load type and examples for drive machines				
	Continuous ru Electric motor Turbine running o Reciprocating en quantity of cylinc	at high speed gine with higher	Non-continuous running Hydraulic motor Turbine running at low speed Reciprocating engine with lower quantity of cylinders		
	Ba	sic load factor c ₀ wi	h daily operation times		
Load type and examples for work machines	up to 16 h	up to 16 h	up to 16 h	over 16 h	
Light drives. shock-free with smooth running characteristics Measurement devices Film cameras Office machines Conveyor systems (light goods)	1.3	1.4	1.4	1.5	
Medium drives. operation with smaller to medium intermittent shock strain Mixing machines Kitchen machines Printing shop machines Textile machines Packaging machines Conveyor systems (heavy goods)	1.6	1.7	1.8	1.9	
Heavy drives. operation with medium to high intermittent shock strain Tool machines Wood processing machines Eccentric drives Conveyor systems (heavy goods)	1.8	1.9	2.0	2.1	
Extremely heavy drives. operation with high constant shock strain Mills Calendars Extruders Piston pumps/compressors Lifting appliances	2.0	2.1	2.2	2.3	

DRIVE DESIGN TIMING BELTS IN optibelt OMEGA PROFILE ADDITIONAL FACTORS

Speed correction factor c₃

For speed increasing drives, a factor corresponding to the speed ratio is added to the basic load factor c_0 .

Table 6

Speed correction	Speed correction factor
i	c ₃
1.00–0.80 0.79–0.57	0.0
0.56-0.40	0.2
0.39–0.28	0.3
0.27 and smaller	0.4

Table 7Fatigue correction factor c6

Operating conditions	Fatigue correction factor c ₆
Use of tension or guide idlers	0.2
Operating time 16 to 24 hours	0.2
Only infrequent or occasional operation	- 0.2

With frequent starts and stops or continual reversing operation, the selected total load factor c_2 should be higher than the ratio between starting torque and nominal torque. If there is a brake on the prime mover the same procedure should apply for the braking torque, if the brake is used frequently. For further questions, please contact the Optibelt Application Engineering Department.

Minimum adjustment of centre distance 'x' for tensioning of timing belts

 $x = 0.004 \cdot a_{nom}$

Table 8

Minimum adjustment of centre distance 'y' for installation on timing belt pulleys without flanges

Axial distance	Shifting distance for the
[mm]	installation of the belt [mm]
Up to 1000	1.8
From 1000 to 1780	2.8
From 1780 to 2540	3.3
From 2540 to 3300	4.1
From 3300 to 4600	5.3

Table 9

Minimum adjustment of centre distance 'y' for installation on timing belt pulleys with flanges

Pitch	Flange on one	Flange on both
[mm]	timing pulley [mm]	timing pulleys [mm]
2	6	12
3	8	14
5	14	19
8	22	33
14	36	58

Table 10 Belt length factor c₇

.							
Profile 2	٨	Profile 8M					
Pitch length [mm]	с ₇	Pitch length [mm] c ₇					
\leq 190 > 190 \leq 260 > 260 \leq 400 > 400 \leq 600 > 600	0.8 0.9 1.0 1.1 1.2	≤ 600 > 600 ≤ 880 > 880 ≤ 1200 > 1200 ≤ 1760 > 1760	0.8 0.9 1.0 1.1 1.2				
Profile 3 <i>I</i>	٨						
Pitch length [mm]	С ₇						
\leq 190 > 190 \leq 260 > 260 \leq 400 > 400 \leq 600	0.8 0.9 1.0 1.1 1.2	Profile 14	M				
> 600		Pitch length [mm]	с ₇				
Profile 5/		≤ 1190 > 1190 ≥ 1610 > 1610 ≤ 1890	0.80 0.90 0.95				
Pitch length [mm]	с ₇	>1890 ≤ 2450	1.00				
≤ 440 > 440 ≤ 555 > 555 ≤ 800 > 800 ≤ 1100	0.8 0.9 1.0 1.1	>2450 ≤ 3150 >3150	1.05 1.10				

Table 11 Teeth in mesh factor c₁

Number	Teeth in mesh factor
of meshing teeth	c ₁
≥ 6	1.0
5	0.8
4	0.6
3	0.4
2	0.2

DRIVE DESIGN TIMING BELTS IN optibelt **OMEGA** PROFILE FORMULAS AND CALCULATION EXAMPLES

Prime mover

Operating conditions

Driven machine

Prime mover Operating condition		5	Driven machine		
Electric motor 50 Hz Star delta start P = 18.5 kW n ₁ = 2850 min ⁻¹	Daily operating time: 12 Number of starts/stops: Environmental influences ambient room temperatu no influence from oil, wa Centre distance: 400 mm Max. pulley diameter: 20	2 per day :: re, ater or dust n to 450 mm	Textile machine P = 15 kW $n_2 = 1830 \text{ min}^{-1} \pm 1\%$ Type of load: constant Also see		
Formulae		Worked example	optibelt CAP drive calculation software at www.optibelt.com		
Total load factor $c_2 = c_0 + c_3 + c_6$ c_0 from table 5, page 40 c_3 from table 6, page 41 c_6 from table 7, page 42		$c_2 = 1.6 + 0 + 0 = 1.6$ $c_0 = 1.6$ $c_3 = 0$ $c_6 = 0$			
Design power $P_B = P \cdot c_2$		$P_{B} = 18.5 \cdot 1.6 = 29.6$	kW		
Timing belt profile from diagrams 1-4, pages 36-39		optibelt OMEGA HP Type 8M			
Speed ratio $i = \frac{n_1}{n_2} = \frac{z_2}{z_1} = \frac{d_{w2}}{d_{w1}}$		i = $\frac{2850}{1830}$ = 1.557			
Number of teeth of the pulleys z_1 , d_{w1} selected from standard range pulleys page 75 $z_2 = z_1 \cdot i$ See to the minimum diameter require	ge of timing belt	-	d _{w1} = 91.67 mm d _{w2} = 142.60 mm d range pulleys page 75 irement z ₁ ≥ 22 (minimum number		
Check the rotary frequency $i = \frac{z_2}{z_1}$ $n_2 = \frac{n_1}{i}$		i = $\frac{56}{36}$ = 1.556 n ₂ = $\frac{2850}{1.556}$ = 1832	min ⁻¹ Requirement: 1830 min ⁻¹ ± 1% met		
Recommended centre distance Recommendation: $a > 0.5 (d_{w1} + d_{w2}) + 15 mm$ $a < 2.0 (d_{w1} + d_{w2})$		a > 0.5 (91.67 + 142.6 a < 2.0 (91.67 + 142.6 a = 425 mm provision			

DRIVE DESIGN TIMING BELTS IN optibelt OMEGA PROFILE FORMULAS AND CALCULATION EXAMPLES

Formulas

Pitch length of the timing belt $L_{wth} \approx 2\alpha \, + \, \frac{\pi}{2} \, \left(d_{wg} + \, d_{wk} \right) \, + \, \frac{(d_{wg} - d_{wk})^2}{4 \, \alpha} \label{eq:Lwth}$ L_{wSt} see standard lengths, see pages 10-11, 13, 16-19, 21-27, and 32-34

Worked example

$$L_{wth} \approx 2 \cdot 425 + \frac{\pi}{2} (142.60 + 91.67) + \frac{(142.60 - 91.67)^2}{4 \cdot 425}$$

L_{wth} \approx **1219.33 mm**
next standard belt length selected from page 18

Centre distance from L_{wSt}

$$a_{nom} = K + \sqrt{K^2 - \frac{(d_{wg} - d_{wk})^2}{8}}$$

 $K = \frac{(L_{wSt})}{4} - \frac{\pi}{8} (d_{wg} + d_{wk})$

Minimum adjustment for tensioning $x = 0.004 \cdot a_{nom}$

Minimum adjustment for fitting belts y = from table 9, page 41

Number of teeth in mesh on the small pulley

$$z_{e} = \frac{z_{k}}{6} \left(3 - \frac{d_{wg} - d_{wk}}{a_{nom}} \right)$$

Belt length factor

c₇ from table 10, page 41

Teeth in mesh factor

c₁ from table 11, page 41

Belt width above nominal power rating Requirement: $P_{\ddot{U}} \ge P_{B}$

 P_{U} = transmissible nominal power of a standard belt width

 $\begin{array}{l} P_{U}^{\circ} = P_{N} \cdot c_{1} \cdot c_{7} \\ P_{N} \text{ value and, if required, width correction factor (which is to be multiplied by the P_{N} value) see pages 46 to 58 \end{array}$

 $a_{nom} = 208 + \sqrt{208^2 - \frac{(142.60 - 91.67)^2}{8}}$ a_{nom} = **415.22 mm** $K = \frac{1200}{4} - \frac{\pi}{8} (142.60 + 91.67) = 208 \text{ mm}$

x ≥ **1.66** mm

y = 22 mm (with flanged pulley)

$$z_{e} = \frac{36}{6} \left(3 - \frac{142.60 - 91.67}{415} \right) = 17.26$$

c7 = 1.0

c1 = 1.0

31.09 kW > 29.60 kW Requirement met!

P_ü = 31.09 · 1.0 · 1.0 = **31.09 kW** P_N for width of 30 mm = 19.68 · 1.58 = **31.09 kW**

Drive to be fitted with:	
1 optibelt OMEGA HP timing belt	1200 8M HP 30
1 optibelt ZRS timing belt pulley	36 8M 30
1 optibelt ZRS timing belt pulley	56 8M 30

DRIVE DESIGN TIMING BELTS IN optibelt OMEGA PROFILE **BELT TENSION**

Belt tension for optibelt OMEGA HP/optibelt OMEGA HL and optibelt OMEGA timing belts

For proper power transmission and for achieving an acceptable belt service life, the correct belt tension is of the utmost importance.

Too low or too high belt tension will lead to the premature failure of the timing belts. Over tensioning often leads to bearing failure on the prime mover or the driven machine. Experience shows that unscientific belt tensioning methods, such as the "thumb pressure method", are not suitable for applying the optimum tension to the drive for maximum efficiency and drive/bearing life. It is therefore recommended that the correct static belt tension should be calculated for each drive. Due to their extremely low-stretch characteristics Optibelt timing belts do not require any further tensioning after correct installation, if properly used. Symbol

$$\begin{array}{ll} F &= test \mbox{ force} & [N] \\ S_{\alpha} &= static \mbox{ shaft loading} & [N] \\ S_{n3} &= circumferential \mbox{ force to be effectively transmitted} & [N] \\ E_{\alpha} &= belt \mbox{ deflection for given span length} & [mm] \\ L &= span \mbox{ length} & [mm] \end{array}$$

1]

[mm]

1. Calculation of the test force F

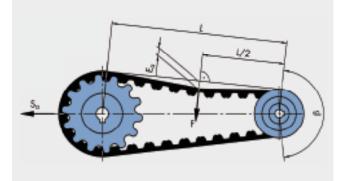
$$F = \frac{S_{n3}}{20}$$
$$S_{n3} = \frac{P \cdot 1000}{v} \qquad v = \frac{d_{wk} \cdot n_k}{19100}$$

2. Calculation of the belt deflection E_a for the existing span length L

$$E_{a} = \frac{L}{50}$$
$$L = \sqrt{\alpha_{nom}^{2} - \left(\frac{d_{wg} - d_{wk}}{2}\right)^{2}}$$

3. Calculation of the minimum static shaft loading

 $S_a = S_{n3} \cdot 1.1$


4. Calculation of the frequency for measuring the belt tension using the Optibelt frequency tension tester

$$f = \sqrt{\frac{T}{4 \cdot k \cdot L^2}}$$

 $T = 0.5 \cdot S_{a}$ belt weight per metre from table 37, page 72 k

span length per metre

Apply test force F in the centre of the span in a right angle to the belt top surface as shown in the illustration below; measure the deflection E_{α} , correct the tension if necessary.

$$F = \frac{1352}{20} = 67.60 \text{ N}$$

$$S_{n3} = \frac{18.5 \cdot 1000}{13.68} \qquad v = \frac{91.67 \cdot 2850}{19100}$$

$$S_{n3} = 1352 \text{ N} \qquad v = 13.68 \text{ m/s}$$

$$E_{a} = \frac{414.44}{50} = 8.3 \text{ mm}$$
$$L = \sqrt{415.22^{2} - \left(\frac{142.60 - 91.67}{2}\right)^{2}} = 414.44 \text{ mm}$$

 $S_{a} = 1352 \text{ N} \cdot 1.1 = 1487.2 \text{ N}$

$$f = \sqrt{\frac{743.6}{4 \cdot 0.174 \cdot 0.414^2}} = 78.9 \text{ Hz}$$

T = 0.5 \cdot 1487.2 N = 743.6 N
k = 0.174 kg/m
L = 0.414 m

DRIVE DESIGN TIMING BELTS IN optibelt OMEGA PROFILE optibelt CAP DRIVE CALCULATION

The drive is to be equipped with:

- optibelt OMEGA HP timing belt 1200 8M HP 30

- optibelt ZRS pulley 36-8M-30 (cylindrical bore)

- optibelt ZRS pulley 56-8M-30 (cylindrical bore)

Also use the optibelt CAP drive calculation Software available at www.optibelt.com

Prime mover	Electric motor P = 18.5 kW					
Driven machine	Texti	le machine	9			
Timing belt data_				Variations/	Information	
Pitch	t:	8.000	mm	10121010110110)		
Width	b:	30.00				
Calculated pitch length	L _{wth} :	1200.00				
Standard pitch length	L _w :	1200.00				
Number of teeth	Z _r :	150				
Belt speed	v:	13.68	m/s			
Timing belt pulley data	Pu	lley 1 (d:	riving)	Pulley 2	(driven)	
Number of teeth	z:	36	<u> </u>	56		
Pitch diameter	d_w :	91.67	mm	142.60	mm	
Pulley face width	b_1 :	38.00	mm	38.00	mm	
Speed	n:	2850.0	1/min	1832.1	1/min	
Number of teeth in mesh	z _e :	17		29		
Torque	M:	104	Nm	162	Nm	
Standard Design		6F		6WF		
Number of flanged pulleys		2		2		
Material		St		GG		
Nominal drive data				Variations/	Information	
Design power	P _B :	29.60	kW			
Nominal power rating	P _ü :	31.09	kW			
Effective service factor	C2:	1.68				
Actual drive ratio	i:	1.56		0.0	00	
Actual centre distance	a:	415.22	mm	-9.78	mm	
Minimum adjustment of centre						
distance for belt installation	у:	≥ 22.00	mm			
Minimum adjustment of centre						
distance for belt tensioning	x:	≥ 1.66	mm			
Actual circumferential load	S _{n3} :	1353	N			
Static shaft load	S _a :	1488	N			
Static span tension	Τ:	744	N			
Span length	L:	414.50	mm			
Methods for setting belt tension						
Belt deflection per span length	E _a :	8	.29 mm	with a load H	F 67.60 N	
optibelt TT 3						
	~		/			

f:

frequency tension tester

78.88 1/s